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The title compound, C7H14BrN2
+
�Br�, was prepared by

nucleophilic substitution of DABCO (systematic name: 1,4-

diazabicyclo[2.2.2]octane) with dibromomethane in acetone.

The structure features Br� � �H close contacts (2.79 and 2.90 Å)

as well as a weak bromine–bromide interaction [3.6625 (6) Å].

Related literature

For use of DABCO as an organocatalyst, see Basaviah et al.

(2003). For related haloalkylations of DABCO, see: Almar-

zoqi et al. (1986); Fronczek et al. (1990); Gustafsson et al.

(2005); Banks et al. (1993); Batsanov et al. (2005); Fletcher

Claville et al. (2007). For inversion twinning, see: Flack &

Bernardinelli (2000).

Experimental

Crystal data

C7H14BrN2
+
�Br�

Mr = 286.02
Orthorhombic, Cmc21

a = 7.1100 (3) Å

b = 11.8085 (5) Å
c = 11.7702 (5) Å
V = 988.21 (7) Å3

Z = 4

Mo K� radiation
� = 8.15 mm�1

T = 193 K
0.36 � 0.35 � 0.06 mm

Data collection

Bruker Kappa APEXII CCD
diffractometer

Absorption correction: integration
[SHELXTL (Sheldrick, 2008)
and XPREP (Bruker, 2005)]
Tmin = 0.151, Tmax = 0.744

7347 measured reflections
991 independent reflections
954 reflections with I > 2�(I)
Rint = 0.050

Refinement

R[F 2 > 2�(F 2)] = 0.022
wR(F 2) = 0.052
S = 1.10
991 reflections
61 parameters
1 restraint

H-atom parameters constrained
��max = 0.42 e Å�3

��min = �0.44 e Å�3

Absolute structure: Flack (1983),
468 Friedel pairs

Flack parameter: �0.004 (17)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT

(Bruker, 2005); data reduction: SAINT and XPREP (Bruker, 2005);

program(s) used to solve structure: SHELXS97 (Sheldrick, 2008);

program(s) used to refine structure: SHELXL97 (Sheldrick, 2008);

molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalMaker

(CrystalMaker, 1994); software used to prepare material for publi-

cation: XCIF (Bruker, 2005).

This work was supported by the National Science Founda-

tion under NSF Award Nos. CBET-0730667 and CHE-

0642413. The Materials Chemistry Laboratory at the Univer-

sity of Illinois was supported in part by grants NSF CHE 95–

03145 and NSF CHE 03–43032 from the National Science

Foundation.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: PK2223).

References

Almarzoqi, B., George, A. V. & Isaacs, N. S. (1986). Tetrahedron Lett. 42, 601–
607.

Banks, R. E., Sharif, I. & Pritchard, R. G. (1993). Acta Cryst. C49, 492–495.
Basaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–891.
Batsanov, A. S., Trmcic, J. & Sandford, G. (2005). Acta Cryst. E61, o681–o682.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). SAINT, XCIF and XPREP. Bruker AXS Inc., Madison,

Wisconsin, USA.
CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford,

England. www.CrystalMaker.com.
Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
Fletcher Claville, M. O., Payne, R. J., Parker, B. C. & Fronczek, F. R. (2007).

Acta Cryst. E63, o2601.
Fronczek, F. R., Ivie, M. L. & Maverick, A. W. (1990). Acta Cryst. C46, 2057–

2062.
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Comment

The nucleophilicity of 1,4-diazabicyclo[2.2.2]octane (DABCO) has enabled it to be an excellent organocatalyst for a variety
of reactions, in particular the Baylis-Hillman reaction (Basaviah et al., 2003). Furthermore, DABCO can undergo substitu-
tion with even relatively unreactive electrophiles such as dichloromethane (Almarzoqi et al., 1986).

We have isolated crystals of the title compound of sufficient quality for crystallographic analysis. Typically, the reaction
between dibromomethane and DABCO proceeds quickly in acetone, resulting in the immediate precipitation of the monoal-
kylated bromide salt that is insoluble in acetone. However, at sufficiently low concentrations of reactants, slow crystalliz-
ation of the product occurs.

The title molecule crystallizes in a non-centrosymmetric space group, Cmc21. One notable feature of this structure is

a close contact between free bromide and the bromomethyl hydrogen (Br2···H5A) of 2.794 (3) Å. Another close contact
for H4B···Br2 (2.899 (3) Å) was found. There is also a relatively close contact between the covalently-bound bromine and
bromide anion (Br1···Br2 3.6625 (6) Å). However, this distance is significantly longer than the Br···Br interaction seen in a
related structure, (bromomethyl)trimethylammonium bromide (Br···Br = 3.369 Å) (Fletcher Claville et al. 2007).

Experimental

Dibromomethane (10 mmol) was added to a solution of DABCO (10 mmol) in acetone (100 ml). Colorless plates of poor
quality evolve almost immediately, which after 1 h are filtered. The filtrate is sealed in a flask and left to sit for 1 week, after
which prisms suitable for X-ray analysis form on the side of the flask.

Refinement

A structural model consisting of one symmetrically independent molecule was developed. All non-hydrogen atoms were
refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding
atoms. The ideally calculated H atoms on C1, C2, and C5 are related by the symmetry operation (1 - x, y, z). For these H
atoms the special position constraints were suppressed to allow for the correct calculation of the idealized H atom positions.
For all H atoms the Uiso values were assigned as 1.2 times the carrier Ueq. On the basis of 468 unmerged Friedel opposites,

the likelihood of inversion twinning is negligible (Flack, 1983; Flack& Bernardinelli, 2000).

http://dx.doi.org/10.1107/S1600536810000292
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Finke,%20A.D.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Gray,%20D.L.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Moore,%20J.S.
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Figures

Fig. 1. Thermal ellipsoid plot showing non-H atoms at 35% probability and H atoms as arbit-
rary small spheres. The atoms labeled A are related by the symmetry operator (1 - x, y, z).

Fig. 2. A packing plot of the unit cell as viewed down the a-axis showing 35% probability el-
lipsoids for non-H atoms. H atoms have been removed to improve clarity.

1-Bromomethyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide

Crystal data

C7H14BrN2
+·Br− F(000) = 560

Mr = 286.02 Dx = 1.922 Mg m−3

Orthorhombic, Cmc21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2 Cell parameters from 3160 reflections
a = 7.1100 (3) Å θ = 3.3–26.3°
b = 11.8085 (5) Å µ = 8.15 mm−1

c = 11.7702 (5) Å T = 193 K

V = 988.21 (7) Å3 Plate, colourless
Z = 4 0.36 × 0.35 × 0.06 mm

Data collection

Bruker Kappa APEXII CCD
diffractometer 991 independent reflections

Radiation source: fine-focus sealed tube 954 reflections with I > 2σ(I)
graphite Rint = 0.050

φ and ω scans θmax = 25.4°, θmin = 3.3°
Absorption correction: integration
(SHELXTL and XPREP; Bruker, 2005) h = −8→8
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Tmin = 0.151, Tmax = 0.744 k = −14→14
7347 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map

Least-squares matrix: full Hydrogen site location: inferred from neighbouring
sites

R[F2 > 2σ(F2)] = 0.022 H-atom parameters constrained

wR(F2) = 0.052
w = 1/[σ2(Fo

2) + (0.0248P)2]
where P = (Fo

2 + 2Fc
2)/3

S = 1.10 (Δ/σ)max < 0.001

991 reflections Δρmax = 0.42 e Å−3

61 parameters Δρmin = −0.44 e Å−3

1 restraint Absolute structure: Flack (1983), 468 Friedel pairs
Primary atom site location: structure-invariant direct
methods Flack parameter: −0.004 (17)

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2004). Seven frame series were integrated and filtered for statist-
ical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005)
before using SAINT/SADABS (Bruker, 2005) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat-
rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of
cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the ambiguous space group.

The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The highest peaks
in the final difference Fourier map were in the vicinity of atoms Br1 and Br2; the final map had no other significant features. A final
analysis of variance between observed and calculated structure factors showed some dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.5000 0.14054 (4) −0.05638 (4) 0.03174 (19)
Br2 0.0000 0.65245 (4) 0.34152 (3) 0.02920 (17)
N1 0.5000 0.5040 (4) 0.1977 (4) 0.0281 (9)
N2 0.5000 0.3707 (3) 0.0253 (3) 0.0188 (8)
C1 0.5000 0.5692 (5) 0.0917 (5) 0.0360 (13)
H1A 0.6126 0.6185 0.0898 0.043* 0.50
H1B 0.3874 0.6185 0.0898 0.043* 0.50
C2 0.5000 0.4932 (4) −0.0128 (4) 0.0291 (12)
H2A 0.3871 0.5086 −0.0595 0.035* 0.50
H2B 0.6129 0.5086 −0.0595 0.035* 0.50
C3 0.3326 (5) 0.4320 (3) 0.1979 (3) 0.0369 (9)
H3A 0.2189 0.4804 0.1960 0.044*
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H3B 0.3294 0.3875 0.2691 0.044*
C4 0.3283 (5) 0.3507 (3) 0.0964 (3) 0.0264 (8)
H4A 0.3263 0.2714 0.1236 0.032*
H4B 0.2137 0.3640 0.0506 0.032*
C5 0.5000 0.3026 (4) −0.0825 (4) 0.0234 (10)
H5A 0.6125 0.3229 −0.1278 0.028* 0.50
H5B 0.3875 0.3229 −0.1278 0.028* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br1 0.0285 (4) 0.0282 (3) 0.0385 (4) 0.000 0.000 −0.0120 (3)
Br2 0.0230 (3) 0.0325 (3) 0.0321 (4) 0.000 0.000 0.0042 (3)
N1 0.037 (2) 0.027 (2) 0.021 (2) 0.000 0.000 −0.0071 (18)
N2 0.021 (2) 0.023 (2) 0.013 (2) 0.000 0.000 −0.0006 (16)
C1 0.046 (3) 0.024 (3) 0.038 (3) 0.000 0.000 −0.005 (2)
C2 0.042 (3) 0.023 (3) 0.022 (3) 0.000 0.000 0.006 (2)
C3 0.039 (2) 0.037 (2) 0.034 (2) −0.0058 (18) 0.0135 (16) −0.0103 (18)
C4 0.0189 (18) 0.035 (2) 0.0254 (17) −0.0029 (15) 0.0062 (12) −0.0040 (13)
C5 0.032 (3) 0.025 (2) 0.013 (2) 0.000 0.000 −0.0048 (18)

Geometric parameters (Å, °)

Br1—C5 1.938 (5) C3—C4 1.532 (4)

N1—C3i 1.463 (4) C3—H3A 0.9900
N1—C3 1.464 (4) C3—H3B 0.9900
N1—C1 1.466 (6) C4—H4A 0.9900
N2—C4 1.499 (4) C4—H4B 0.9900

N2—C4i 1.499 (4) C5—H5A 0.9900
N2—C5 1.502 (6) C5—H5B 0.9900
N2—C2 1.514 (6) Br1—Br2ii 3.6625 (6)

C1—C2 1.522 (7) Br2—H5Aiii 2.79

C1—H1A 0.9900 Br2—H5Biv 2.79

C1—H1B 0.9900 Br2—H4Bv 2.90

C2—H2A 0.9900 Br2—H4Biv 2.90
C2—H2B 0.9900

C3i—N1—C3 108.9 (4) H2A—C2—H2B 108.3

C3i—N1—C1 107.8 (3) N1—C3—C4 112.3 (3)
C3—N1—C1 107.8 (3) N1—C3—H3A 109.1

C4—N2—C4i 109.1 (4) C4—C3—H3A 109.1
C4—N2—C5 112.8 (2) N1—C3—H3B 109.1

C4i—N2—C5 112.8 (2) C4—C3—H3B 109.1
C4—N2—C2 108.4 (2) H3A—C3—H3B 107.9

C4i—N2—C2 108.4 (2) N2—C4—C3 108.7 (3)
C5—N2—C2 105.2 (3) N2—C4—H4A 109.9
N1—C1—C2 112.2 (4) C3—C4—H4A 109.9
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N1—C1—H1A 109.2 N2—C4—H4B 109.9
C2—C1—H1A 109.2 C3—C4—H4B 109.9
N1—C1—H1B 109.2 H4A—C4—H4B 108.3
C2—C1—H1B 109.2 N2—C5—Br1 113.2 (3)
H1A—C1—H1B 107.9 N2—C5—H5A 108.9
N2—C2—C1 108.9 (4) Br1—C5—H5A 108.9
N2—C2—H2A 109.9 N2—C5—H5B 108.9
C1—C2—H2A 109.9 Br1—C5—H5B 108.9
N2—C2—H2B 109.9 H5A—C5—H5B 107.7
C1—C2—H2B 109.9

C3i—N1—C1—C2 58.7 (2) C4i—N2—C4—C3 59.3 (4)
C3—N1—C1—C2 −58.7 (2) C5—N2—C4—C3 −174.6 (3)
C4—N2—C2—C1 59.1 (2) C2—N2—C4—C3 −58.6 (3)

C4i—N2—C2—C1 −59.1 (2) N1—C3—C4—N2 −0.5 (4)
C5—N2—C2—C1 180.0 C4—N2—C5—Br1 −62.1 (2)
N1—C1—C2—N2 0.0 C4i—N2—C5—Br1 62.1 (2)

C3i—N1—C3—C4 −57.5 (5) C2—N2—C5—Br1 180.0
C1—N1—C3—C4 59.2 (4)
Symmetry codes: (i) −x+1, y, z; (ii) −x+1/2, −y+1/2, z−1/2; (iii) −x+1, −y+1, z+1/2; (iv) −x, −y+1, z+1/2; (v) x, −y+1, z+1/2.
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Fig. 1
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Fig. 2


