Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Bromomethyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide

Aaron D. Finke, ${ }^{\text {a }}$ Danielle L. Gray ${ }^{\text {b }}$ and Jeffrey S. Moore ${ }^{\mathrm{c} *}$

${ }^{a}$ University of Illinois, School of Chemical Sciences, Box 77-5, 600 South Mathews Avenue, Urbana, Illinois 61801, USA, ${ }^{\text {b }}$ University of Illinois, School of Chemical Sciences, Box 59-1, 505 South Mathews Avenue, Urbana, Illinois 61801, USA, and ${ }^{c}$ University of Illinois, School of Chemical Sciences, Box 55-5, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
Correspondence e-mail: jsmoore@illinois.edu

Received 19 December 2009; accepted 4 January 2010

Key indicators: single-crystal X-ray study; $T=193 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.022 ; w R$ factor $=0.052$; data-to-parameter ratio $=16.2$.

The title compound, $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{BrN}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, was prepared by nucleophilic substitution of DABCO (systematic name: 1,4diazabicyclo[2.2.2]octane) with dibromomethane in acetone. The structure features $\mathrm{Br} \cdots \mathrm{H}$ close contacts (2.79 and $2.90 \AA$) as well as a weak bromine-bromide interaction $[3.6625$ (6) Å].

Related literature

For use of DABCO as an organocatalyst, see Basaviah et al. (2003). For related haloalkylations of DABCO, see: Almarzoqi et al. (1986); Fronczek et al. (1990); Gustafsson et al. (2005); Banks et al. (1993); Batsanov et al. (2005); Fletcher Claville et al. (2007). For inversion twinning, see: Flack \& Bernardinelli (2000).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{BrN}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$b=11.8085$ (5) \AA
$M_{r}=286.02$
Orthorhombic, Cmc_{1}
$a=7.1100$ (3) \AA
$=11.7702$ (5) A
$V=988.21$ (7) \AA^{3}
$Z=4$

Mo $K \alpha$ radiation
$\mu=8.15 \mathrm{~mm}^{-1}$
Data collection
Bruker Kappa APEXII CCD diffractometer
Absorption correction: integration [SHELXTL (Sheldrick, 2008)
and XPREP (Bruker, 2005)]
$T_{\text {min }}=0.151, T_{\text {max }}=0.744$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.052$
$S=1.10$
991 reflections
61 parameters
1 restraint

H -atom parameters constrained
$T=193 \mathrm{~K}$
$0.36 \times 0.35 \times 0.06 \mathrm{~mm}$

7347 measured reflections 991 independent reflections 954 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 468 Friedel pairs
Flack parameter: -0.004 (17)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF (Bruker, 2005).

This work was supported by the National Science Foundation under NSF Award Nos. CBET-0730667 and CHE0642413. The Materials Chemistry Laboratory at the University of Illinois was supported in part by grants NSF CHE 9503145 and NSF CHE 03-43032 from the National Science Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2223).

References

Almarzoqi, B., George, A. V. \& Isaacs, N. S. (1986). Tetrahedron Lett. 42, 601607.

Banks, R. E., Sharif, I. \& Pritchard, R. G. (1993). Acta Cryst. C49, 492-495.
Basaviah, D., Rao, A. J. \& Satyanarayana, T. (2003). Chem. Rev. 103, 811-891. Batsanov, A. S., Trmcic, J. \& Sandford, G. (2005). Acta Cryst. E61, o681-o682. Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). SAINT, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England. www.CrystalMaker.com.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Fletcher Claville, M. O., Payne, R. J., Parker, B. C. \& Fronczek, F. R. (2007). Acta Cryst. E63, o2601.
Fronczek, F. R., Ivie, M. L. \& Maverick, A. W. (1990). Acta Cryst. C46, 20572062.

Gustafsson, B., Håkansson, M. \& Jagner, S. (2005). Inorg. Chim. Acta, 358, 1309-1312.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

1-Bromomethyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide

A. D. Finke, D. L. Gray and J. S. Moore

Comment

The nucleophilicity of 1,4-diazabicyclo[2.2.2]octane (DABCO) has enabled it to be an excellent organocatalyst for a variety of reactions, in particular the Baylis-Hillman reaction (Basaviah et al., 2003). Furthermore, DABCO can undergo substitution with even relatively unreactive electrophiles such as dichloromethane (Almarzoqi et al., 1986).

We have isolated crystals of the title compound of sufficient quality for crystallographic analysis. Typically, the reaction between dibromomethane and DABCO proceeds quickly in acetone, resulting in the immediate precipitation of the monoalkylated bromide salt that is insoluble in acetone. However, at sufficiently low concentrations of reactants, slow crystallization of the product occurs.

The title molecule crystallizes in a non-centrosymmetric space group, $\mathrm{Cmc} 2{ }_{1}$. One notable feature of this structure is a close contact between free bromide and the bromomethyl hydrogen ($\mathrm{Br} 2 \cdots \mathrm{H} 5 \mathrm{~A}$) of 2.794 (3) \AA. Another close contact for $\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{Br} 2(2.899(3) \AA)$ was found. There is also a relatively close contact between the covalently-bound bromine and bromide anion ($\mathrm{Br} 1 \cdots \mathrm{Br} 23.6625$ (6) \AA). However, this distance is significantly longer than the $\mathrm{Br} \cdots \mathrm{Br}$ interaction seen in a related structure, (bromomethyl)trimethylammonium bromide $(\mathrm{Br} \cdots \mathrm{Br}=3.369 \AA)$ (Fletcher Claville et al. 2007).

Experimental

Dibromomethane (10 mmol) was added to a solution of DABCO $(10 \mathrm{mmol})$ in acetone $(100 \mathrm{ml})$. Colorless plates of poor quality evolve almost immediately, which after 1 h are filtered. The filtrate is sealed in a flask and left to sit for 1 week, after which prisms suitable for X-ray analysis form on the side of the flask.

Refinement

A structural model consisting of one symmetrically independent molecule was developed. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms. The ideally calculated H atoms on $\mathrm{C} 1, \mathrm{C} 2$, and C 5 are related by the symmetry operation ($1-x, y, z$). For these H atoms the special position constraints were suppressed to allow for the correct calculation of the idealized H atom positions. For all H atoms the $\mathrm{U}_{\text {iso }}$ values were assigned as 1.2 times the carrier $U_{\text {eq }}$. On the basis of 468 unmerged Friedel opposites, the likelihood of inversion twinning is negligible (Flack, 1983; Flack\& Bernardinelli, 2000).

supplementary materials

Figures

Fig. 1. Thermal ellipsoid plot showing non- H atoms at 35% probability and H atoms as arbitrary small spheres. The atoms labeled A are related by the symmetry operator (1-x,y,z).

Fig. 2. A packing plot of the unit cell as viewed down the a-axis showing 35% probability ellipsoids for non-H atoms. H atoms have been removed to improve clarity.

1-Bromomethyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{BrN}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=286.02$
Orthorhombic, $\mathrm{Cmc}_{2}{ }_{1}$
Hall symbol: C 2c -2
$a=7.1100$ (3) \AA
$b=11.8085$ (5) \AA
$c=11.7702(5) \AA$
$V=988.21(7) \AA^{3}$
$Z=4$

Data collection

Bruker Kappa APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: integration
(SHELXTL and XPREP; Bruker, 2005)
$F(000)=560$
$D_{\mathrm{x}}=1.922 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3160 reflections
$\theta=3.3-26.3^{\circ}$
$\mu=8.15 \mathrm{~mm}^{-1}$
$T=193 \mathrm{~K}$
Plate, colourless
$0.36 \times 0.35 \times 0.06 \mathrm{~mm}$

991 independent reflections
954 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-8 \rightarrow 8$
$T_{\text {min }}=0.151, T_{\text {max }}=0.744$
7347 measured reflections
$k=-14 \rightarrow 14$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.052$

$$
S=1.10
$$

991 reflections
61 parameters

1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0248 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.44 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983), 468 Friedel pairs
Flack parameter: -0.004 (17)

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2004). Seven frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005) before using SAINT/SADABS (Bruker, 2005) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the ambiguous space group.
The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F^{2}. The highest peaks in the final difference Fourier map were in the vicinity of atoms Br 1 and Br 2 ; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed some dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Br1	0.5000	$0.14054(4)$	$-0.05638(4)$	$0.03174(19)$	
Br2	0.0000	$0.65245(4)$	$0.34152(3)$	$0.02920(17)$	
N1	0.5000	$0.5040(4)$	$0.1977(4)$	$0.0281(9)$	
N2	0.5000	$0.3707(3)$	$0.0253(3)$	$0.0188(8)$	
C1	0.5000	$0.5692(5)$	$0.0917(5)$	$0.0360(13)$	
H1A	0.6126	0.6185	0.0898	0.043^{*}	0.50
H1B	0.3874	0.6185	0.0898	0.043^{*}	0.50
C2	0.5000	$0.4932(4)$	$-0.0128(4)$	$0.0291(12)$	
H2A	0.3871	0.5086	-0.0595	0.035^{*}	0.50
H2B	0.6129	0.5086	-0.0595	0.035^{*}	0.50
C3	$0.3326(5)$	$0.4320(3)$	$0.1979(3)$	$0.0369(9)$	
H3A	0.2189	0.4804	0.1960	0.044^{*}	

H3B	0.3294	0.3875	0.2691	0.044^{*}	
C4	$0.3283(5)$	$0.3507(3)$	$0.0964(3)$	$0.0264(8)$	
H4A	0.3263	0.2714	0.1236	0.032^{*}	
H4B	0.2137	0.3640	0.0506	0.032^{*}	
C5	0.5000	$0.3026(4)$	$-0.0825(4)$	$0.0234(10)$	
H5A	0.6125	0.3229	-0.1278	0.028^{*}	0.50
H5B	0.3875	0.3229	-0.1278	0.028^{*}	0.50

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.0285(4)$	$0.0282(3)$	$0.0385(4)$	0.000	0.000	$-0.0120(3)$
Br 2	$0.0230(3)$	$0.0325(3)$	$0.0321(4)$	0.000	0.000	$0.0042(3)$
N 1	$0.037(2)$	$0.027(2)$	$0.021(2)$	0.000	0.000	$-0.0071(18)$
N 2	$0.021(2)$	$0.023(2)$	$0.013(2)$	0.000	0.000	$-0.0006(16)$
C 1	$0.046(3)$	$0.024(3)$	$0.038(3)$	0.000	0.000	$-0.005(2)$
C 2	$0.042(3)$	$0.023(3)$	$0.022(3)$	0.000	0.000	$0.006(2)$
C 3	$0.039(2)$	$0.037(2)$	$0.034(2)$	$-0.0058(18)$	$0.0135(16)$	$-0.0103(18)$
C 4	$0.0189(18)$	$0.035(2)$	$0.0254(17)$	$-0.0029(15)$	$0.0062(12)$	$-0.0040(13)$
C 5	$0.032(3)$	$0.025(2)$	$0.013(2)$	0.000	0.000	$-0.0048(18)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 5$	1.938 (5)	C3-C4	1.532 (4)
N1-C3 ${ }^{\text {i }}$	1.463 (4)	C3-H3A	0.9900
N1-C3	1.464 (4)	C3-H3B	0.9900
N1-C1	1.466 (6)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
N2-C4	1.499 (4)	C4-H4B	0.9900
$\mathrm{N} 2-\mathrm{C} 4{ }^{\text {i }}$	1.499 (4)	C5-H5A	0.9900
N2-C5	1.502 (6)	C5-H5B	0.9900
N2-C2	1.514 (6)	$\mathrm{Br} 1-\mathrm{Br} 2^{\mathrm{ii}}$	3.6625 (6)
$\mathrm{C} 1-\mathrm{C} 2$	1.522 (7)	$\mathrm{Br} 2-\mathrm{H} 5 \mathrm{~A}^{\text {iii }}$	2.79
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9900	$\mathrm{Br} 2-\mathrm{H} 5 \mathrm{~B}^{\text {iv }}$	2.79
C1-H1B	0.9900	$\mathrm{Br} 2-\mathrm{H} 4 \mathrm{~B}^{\text {v }}$	2.90
C2-H2A	0.9900	$\mathrm{Br} 2-\mathrm{H} 4 \mathrm{~B}^{\text {iv }}$	2.90
C2-H2B	0.9900		
$\mathrm{C} 3{ }^{\text {i }}-\mathrm{N} 1-\mathrm{C} 3$	108.9 (4)	H2A-C2-H2B	108.3
C3 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{C} 1$	107.8 (3)	N1-C3-C4	112.3 (3)
C3-N1-C1	107.8 (3)	N1-C3-H3A	109.1
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 4{ }^{\text {i }}$	109.1 (4)	C4-C3-H3A	109.1
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$	112.8 (2)	N1-C3-H3B	109.1
C4 ${ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{C} 5$	112.8 (2)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.1
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 2$	108.4 (2)	H3A-C3-H3B	107.9
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{N} 2-\mathrm{C} 2$	108.4 (2)	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	108.7 (3)
C5-N2-C2	105.2 (3)	N2-C4-H4A	109.9
N1-C1-C2	112.2 (4)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.9

sup-4

supplementary materials

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.2	N2-C4-H4B	109.9
C2-C1-H1A	109.2	C3-C4-H4B	109.9
N1-C1-H1B	109.2	H4A-C4-H4B	108.3
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.2	N2-C5-Br1	113.2 (3)
H1A-C1-H1B	107.9	N2-C5-H5A	108.9
N2-C2-C1	108.9 (4)	$\mathrm{Br} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	108.9
N2-C2-H2A	109.9	N2-C5-H5B	108.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.9	Br1-C5-H5B	108.9
N2-C2-H2B	109.9	H5A-C5-H5B	107.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.9		
C3 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	58.7 (2)	$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	59.3 (4)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-58.7 (2)	C5-N2-C4-C3	-174.6 (3)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	59.1 (2)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	-58.6 (3)
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	-59.1 (2)	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	-0.5 (4)
C5-N2-C2-C1	180.0	C4-N2-C5-Br1	-62.1 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	0.0	$\mathrm{C} 4{ }^{\mathrm{i}}$ - $\mathrm{N} 2-\mathrm{C} 5-\mathrm{Br} 1$	62.1 (2)
$\mathrm{C} 3{ }^{\text {i }}-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	-57.5 (5)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5-\mathrm{Br} 1$	180.0
C1-N1-C3-C4	59.2 (4)		

supplementary materials

Fig. 1

Fig. 2

